Microcrystalline cellulose can be converted into valuable products such as glucose via hydrolysis reaction at mild condition using sulfonated carbon catalyst. A sulfonated carbon material was prepared by carbonization of bamboo sawdust followed by sulfonation. Prepared catalyst was studied for its ability to catalyze microcrystalline cellulose yield via hydrolysis reaction. Three carbon based catalysts at three different temperatures 400, 450 and 500 were prepared. The sulfonated catalysts were characterized using the following analyses elemental analysis, total acid density, FT IR, SEM and XRD. Based on the above characterization results, sulfonated carbon prepared at 500 and sulfonated via ultra sonication was found to have a higher acid density that is suitable to catalyze the hydrolysis reaction. The first step in the catalyst development approach was to increase the hydrolysis reaction by employing a stronger sulfonation procedure during catalyst preparation. The total acid density obtained for sulfonated carbon catalyst at 500 was 4.16 mmol g which significantly increases glucose yield. According to the FTIR analysis the sulfonated bio char contained sulfonic, carboxylic, and phenolic groups, which are responsible for the exhibited high catalytic performance during hydrolysis of cellulose. The yield of glucose obtained was 60.5 at 149.0°C in 8hour reaction time.
by Kefyalew H/Mariam | Bayisa Dame | Beteley Tekola "Design, Performance Evaluation and Synthesis of Sulfonated Carbon Based Catalyst for Hydrolysis of Microcrystalline Cellulose"
Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-5 | Issue-1 , December 2020,
URL: https://www.ijtsrd.com/papers/ijtsrd38100.pdf
ugcapprovedmanagementjournal, openaccessjournalofmanagement, paperpublicationinmanagement
No comments:
Post a Comment